IEA Wind TCP – Floating Offshore Wind

Technology Foundations for Ireland UK Floating Wind

John Mc Cann Chair, ExCo Member Ireland 12/3/2021

Technology Collaboration Programme

IEA Wind TCP Strategic Objectives 2019-2024

Maximize the value of wind energy in energy systems and markets Lower the cost of land-based and offshore wind energy

Facilitate wind energy deployment through social support and environmental compatibility

Foster collaborative research and the exchange of best practices and data

Research Priorities 2019-2024

Energy Systems with High Amounts of Wind

Social, Environmental, and Economic Impacts

Communication, Education, and Engagement

Research Priorities 2019-2024

iea wind

Wind TCP – Organizational Structure & Roles

IEA Wind R,D&D Tasks Overview

20	13	2014	2015	201	16 20	017 20	18 20	19 20	020 20	021	2022	2023	2024	
Resource an	d Site Cha	racterisation					T							
2010	Task 31 -	- Wind Farm F	low Modelling							2021				
2011	Task 32 -	- Lidar for Wir	id Energy							2021				
				2016	Task 36 - For	ecasting				2021				
									2021	Task 4	4 – Farm Flow C	Control		2024
Advanced Technology														
1987	Task 11 -	 Base Techno 	logy Informatio	on Excha	nge									2024
2001	Task 19 -	- Wind Energy	in Cold Climat	es						2021				
2008	Task 27 -	- Small Wind 1	furbines in Turl	bulent Si	ites		2018		2					
2008	Task 29 -	- Analysis of A	erodynamic M	easurem	nents				2020					
2010	Task 30 -	- Computer Co	odes for Model	s for Offs	shore Wind Er	nergy (OC6)					2022			
						2018	Task 39 – Qu	iet Wind	2020					
						2018	Task 40 - Dov	wnwind Turbin	e Technology	2021				
							2019	Task 42 – Life	e Extension	2021				
							2019	Task 43 - Dig	italisation	2021				
									2021	Task 4	6 – Leading Edg	e Erosion		2024
									2021	Task 4	7 - Aerodynami	CS		2024
Energy Syste	ems with I	High Amount	s of Wind											
2005	Task 25 -	- Power Syste	ms with Large A	Amounts	of Wind	(2024
			2015 Task 3	87 – Syste	ems Engineeri	ng					2021			
							2019	Task 41 – Dis	stributed Wind		2022			
Social, Envir	onmental	and Econom	ic Impact											
2008	Task 26 -	- Cost of Wind	l Energy					2019						
2007	Task 28 -	- Social Accep	tance of Wind I	Energy P	rojects			2019						
2013	Task 34 -	- Environmen	tal Effects of W	ind Ener	gy (WREN)									2024
	-							2020	Task 45 – Re	cycling of	WT Blades	2023		
Communication, Education and Engagement														
2011	Commu	nication Strate	gy									2023		
								200						
							6							

Task 30 OC6 Objectives, Expected Results

- Computer Codes for Models for Offshore Wind Energy
- Objectives and Outcomes: Verify and validate offshore wind design tools
 - Assess simulation accuracy & reliability
 - Train new analysts on how to run codes correctly
 - Investigate capabilities of implemented theories
 - Improve design tools; identify further R&D needs
- Current Term:
 - Primary group focused on Phase II
 - Subgroup focused on CFD Phase I

Phase I: Nonlinear Hydrodynamics Jan 2019 – Dec 2019 (OWN TESTING)

Phase III: Aerodynamics under Motion July 2020 – June 2021 (UNAFLOW)

Phase II: Soil/Structure Interaction Jan 2020 – June 2020 (REDWIN)

Phase IV: Hydrodynamic Challenges July 2021 – June 2022 (STIESDAL)

TEM 99 Floating Offshore Wind Arrays

Topical Expert Meeting #99 July 2020

- Session 1: Anchoring & Moorings
- Session 2: Cabling & Export
- Session 3: Metocean Assessment
- Session 4: Control of Floating Farms
- Session 5: Installation, Operations & Maintenance (Marine Logistics)
- Session 6: Being a Good Neighbour

INTERNATIONAL ENERGY AGENCY

Implementing Agreement for Co-operation in the Research, Development and Deployment of Wind Turbine Systems Task 11

Topical Expert Meeting #99 on

Floating Offshore Wind Array Challenges and Opportunities

IEA Wind Task 11 July 15, 17 & 20, 2020 Online meeting

Source: Principle Power

Technical Lead and Host: Cian Desmond – MaREI (UCC) Matt Hall, Matt Shields – NREL Daniel Averbuch, Fabrice Guillemin, Pauline Bozonnet – IFPEN Aaron Smith, Nailia Dindarova – Principle Power

New Task Floating Offshore Wind Arrays

Proposed Operating Agents:

NREL, U.S.A. Matt Shields, (matt.shields@nrel.gov)

IFPEN, France, Pauline Bozonnet, (pauline.bozonnet@ifpen.fr)

GDG, Ireland, Cian Desmond, (cdesmond@gdgeo.com)

International Energy Agency (IEA) Implementing Agreement for Co-operation in the Research and Development of Wind Energy Systems (IEA Wind)

IEA Task Proposal

IDEA Integrated DEsign of floating wind Arrays

TEM 102 – Airborne Wind Energy

Topical Expert Meeting #102 Sept 2020

- Session 1: Resource potential & Environmental and social integration
- Session 2: Safety aspects and regulation & Common design tools, reference models
- Session 3: Functional requirements & Electrical system
- Session 4: Educational needs & Road mapping

TEM 102 – Airborne Wind Energy

Topical Expert Meeting #102 Sept 2020

- Session 1: Resource potential & Environmental and social integration
- Session 2: Safety aspects and regulation & Common design tools, reference models
- Session 3: Functional requirements & Electrical system
- Session 4: Educational needs & Road mapping

New Task Proposal– Airborne Wind Energy

IEA Wind – Task Proposal Airborne Wind Energy

IEA Wind TCP ExCo Meeting 14 October 2020

Kristian Petrick, Airborne Wind Europe Jochem Weber, NREL

New Task Proposal– Airborne Wind Energy

Four proposed Working Groups

5

IEA Task on AWE: Enabling the safe and widely supported deployment of AWE by bringing together academia, government & regulators, society and industry

WP Management	Resources & Potential	Social acceptance	Safety & Regulation	Reference Models & Tools
 Organisation & management of Task Communication Website Dissemination 	 Wind resource mapping Potential markets: on- and offgrid, on- and offshore LCOE and cost curves Scenario models Joint technology assessment Synergies with Tasks 26, 31, 32, 36 	 Site selection Visual impacts Noise Impacts on birds & bats Participation Life-Cycle Analysis Circular Economy Synergies with Tasks 28, 34 	 Airspace regulation Concept of operations Risk assessment U-Space integration Standardization Involvement of aviation authorities (EASA, FAA, CAAs,) 	 Joint reference model(s) Simulations Tools Common definition of metrics, performance indicators Functional requirements
 Task reporting Communication outputs 	 Map Guidelines Learning curves Energy scenarios 	GuidelinesSurveys and studies	 Standards and guidelines 	 Reference models Tools Definitions

13

IEA Wind – Task Proposal on Airborne Wind Energy

IEA Wind Annual Report

- Global Overview and Statistics
 - Deployment, R,D&D
- IEA Wind Research Tasks
 - Objectives, Progress, Outputs
- Country Reports
 - Wind Power deployment Production and share of electricity
 - Policy Updates Highlights
 - Environmental and socio economic highlights
 - R,D&D Highlights

iea wind

John Mc Cann john.mccann@seai.ie

Technology Foundations for Ireland UK Floating Wind John Mc Cann 12/3/2021

www.seai.ie

Overview

Wind Energy in Ireland and SEAI Role Wind Energy Roadmap 2011 SEAI R,D&D Call 2021 Floating Offshore Wind Topics

Wind Energy in Ireland & SEAI Role

Key Statistics and Key Targets

Peak Electricity Demand to Date:	5,357 MW
Installed Wind Capacity @ Feb 2021:	4,309 MW
Maximum Wind Output to Date:	3,347 MW
Wind's Contribution to Electricity in 2020:	36.4%* (33.6%**)
Renewable Contribution to Electricity in 2020:	42.2%* (38.9%**)
Wind TWh 2020:	11.13 TWh
2020 Targets	
EU RES Directive Target – Total Energy	16%
RES-E	40%
* Preliminary Estimate Actual gross contribution (non-normalised)	

Sources: EirGrid & SEAI

New 2030 Renewable Energy Targets

- 55% RES-E Target Initially Proposed in RESS and NECP
- 70% RES-E Target Announced in Climate Action Plan
 - at least 3.5 GW of offshore renewable energy (increased to 5GW in PfG)
 - up to 8.2 GW total of increased onshore wind capacity
- 183 Actions in Climate Action Plan 15 Renewable Electricity Actions

SEAI Role

- Energy Authority for Ireland
- Renewable Energy and Energy Efficiency
 - Operate Government Schemes
 - Fund RD&D
- Energy Statistics
- Arrange IEA TCP Participation

Test Facilities

SmartBay Galway Bay Marine Energy Test Site

- Consent Obtained for ¼ Scale Floating Wind Test Atlantic Marine Energy Test Site
- EU Funding for Floating Wind Demonstration Wave Tank Test Facilities in Cork

EU Funded Project AFLOWT

- €31M funding award
- Partners: European Marine Energy Centre (EMEC), SEAI, SAIPEM SA, Cable Life Cycle Assurance (CaLiCyA) France, Maritime Research Institute Netherlands (MARIN), Fraunhofer Institute for Wind Energy Systems (IWES) Germany, University College Cork and ESB E&MP
- Testing AMETS 2022

SEAI Wind Energy Roadmap 2011

Wind Energy Roadmap for Ireland 2011

Wind Energy Roadmap for Ireland 2011

Cumulative Capacity with Repowering of Onshore and Offshore Wind Installations to 2050

SEAI R,D&D Call 2021 Floating Offshore Wind Topics

SEAI 2021 RD&D Call for Proposals

Project specifications relevant to floating offshore wind energy:

- **Topic 20** Floating offshore wind development
- **Topic 23** Collection of data to inform policy development and consenting for offshore renewable technologies
- **Topic 24** Development of emerging ocean energy and offshore renewable technologies **Related topics:**
- **Topic 5** Green hydrogen production from Irish onshore and offshore wind resources
- **Topic 11** Establishing an energy self-sufficient coastal community in practice: Feasibility, development, pilot demonstration
- Topic 9 Airborne wind energy
- **Topic 15** Remote and autonomous inspection and maintenance of onshore and offshore wind turbines

Deadline for Applications March 29th!

Topic 20 Floating Offshore Wind Development

Project Objectives & Expected Outputs:

- Definition of reference site conditions for floating wind arrays
 - Curating a set of site conditions representative of the global floating wind deployment pipeline
- Development of reference floating wind array designs
 - Developing reference array designs for typical site conditions and technology types.
- Array-level failure risks and mitigation
 - Cataloguing array-level failure risks and mitigation strategies with particular consideration of Irish conditions
- Stakeholder integration
 - Identifying critical innovation opportunities and marine spatial planning requirements that will affect floating wind array design and deployment
- Route to market opportunities
 - Identifying practical options and critical path to unlock connection challenges, route to market and export potential
- Examination of pathway to 2030 and parameters and timelines required for scaling
 - Identifying possible demonstration opportunities pre- 2030, opportunities to build supply chain, appropriate support level pre-2030 and post-2030.

