ာ MaREI

Irish Research Activity in Floating Offshore Wind

Dr Jimmy Murphy - UCC Senior Lecturer, Lead of UCC ORE Research Group and of the Lir National Ocean Test Facility

12th March 2021

A World Leading SFI Research Centre

MaREI, the SFI Research Centre for Energy, Climate and Marine

Environmental Research Institute, UCC

OUR VISION

OUR MISSION

"To make Ireland a global leader in energy and marine research and innovation" "To advance energy and marine research, innovation, and commercialisation to facilitate Ireland's leadership in confronting urgent global challenges, specifically the **energy transition**, **climate action**, and **blue growth**; and to provide the underlying capacity, policy context, industry collaborations, and societal engagement to enable this"

 \bigcirc

OUR MOTIVATIONS

Research Area 4 Coastal & Marine Systems

MaREI Phase 2: 2019- 2025

INFRASTRUCTURE DEVELOPMENT HIGHLIGHTS

()

Supporting Device Development

Floating Offshore Wind Research Overview

University College Cork (Jimmy Murphy and Gregorio Iglesias)

- Physical Model Testing & Numerical Modelling
- Techno-economic assessment

National University of Galway (Jamie Goggins, Sean Leen and Stephen Nash)

Materials, Structural Testing & Numerical Modelling

University of Limerick (Dan Toal)

• Robotics and underwater inspection

University of Maynooth (John Ringwood)

• Numerical Modelling & Control Strategies

Dundalk Institute of Technology (Tom Dooley)

• WEC technology development

University College Dublin (Frederic Dias)

• Numerical Modelling

University College Cork (Jimmy Murphy and Gregorio Iglesias)

- Physical Model Testing & Numerical Modelling
- Techno-economic assessment

National University of Galway (Jamie Goggins, Sean Leen and Stephen Nash)

Materials, Structural Testing & Numerical Modelling

University of Limerick (Dan Toal)

• Robotics and underwater inspection

University of Maynooth (John Ringwood)

• Numerical Modelling & Control Strategies

Dundalk Institute of Technology (Tom Dooley)

• WEC technology development

University College Dublin (Frederic Dias)

• Numerical Modelling

Tested first floating wind platform in 2004 – TLP design (Irish led)

Scope of Work

- Floating platform development for research purposes
- Testing of commercial platform designs
- Upgrading Infrastructure and equipment
- Development of new more comprehensive testing methods

COMARE Physical Model Testing

Experience in testing different platform types – and hearing the compelling arguments in favour of each type

• Stability, survivability, cost, low mass, integrated design, installation method, mobilisation of local supply chain, platform draught, ease of fabrication, materials used, modular design, scalability, etc.

As yet there is not a stand out platform design that on a technical and cost basis puts it clearly ahead of other designs

Possible that other factors could decide selection of platforms for particular sites

For Ireland

- Floating wind will be deployed in Celtic Sea and Atlantic locations
- Exposed to more severe conditions than any floating wind platform has experienced to date
- Demonstration of operation and survival of platforms in this environment is essential
- Capacity to mobilise the Irish supply chain is also important
 - Use of ports Fabrication of platforms Windfarm components Operational bases

The IEA Task "IDEA" is focused on the sustainable development of floating wind arrays and is a joint venture between MaREI, GDG, NREL and IFPEN (France). The proposal is at the final stage of approval and involved 44 organisations from 17 countries.

- 4 wave tanks (one with current)
- Hexapod
- S-PIV
- Simulation of wind and current effects on floating technologies
 - software in the loop

Testing Infrastructure and Methods

REI Techno-Economic Analysis

Case study		Irish Sea	Celtic Sea	Atlantic Ocean
reference				
Turbine Size	MW	12	12	14
Substructure	Text	XL	Semi-sub	Semi-sub
		Monopile		
Number of turbines	Number	41	83	71
Farm capacity	MW	492	996	994
Farm lifecycle	Years	25	25	25
Start	Year	2025	2035	2035
Discount rate	%	5	6.5	6.5

Case study reference		Irish Sea	Celtic Sea	Atlantic Ocean
Turbine Size	MW	12	12	14
Substructure	Text	XL Monopile	Semi-submersible	Semi-submersible
Number of turbines	Number	41	83	71
Farm capacity	MW	492	996	994
Discount rate	%	5	6.5	6.5
Costs (NPV)	€M	1,927	3,849	4,919
Energy (NPV)	MWh	29,790,968	52,053,189	45,535,752
LCoE	€/MWh	65	74	108
DEVEX	€/MW	134,842	173,378	173,727
CAPEX (dry)	€/MW	1,756,276	2,141,238	2,232,424
Installation	€/MW	475,202	656,642	1,108,855
CAPEX (dry & installation)	€/MW	2,231,479	2,797,880	3,341,279
OPEX (undiscounted)	€/MW/yr	107,040	72,565	94,968
Energy production	MWh	52,777,958	106,540,232	92,614,461
Energy production	MWh/MW	107,272	106,968	93,174
DECEX	€/MW	221,844	164,007	209,354
Salvage revenue	€/MW	58,615	116,595	116,915
Availability (time-based)	%	88.74%	83.69%	68.91%
Availability (energy-based)	%	88.11%	82.58%	68.10%
Capacity factor	%	49%	49%	43%

Category Technology (All)	Variable Substructure type Fixed - jacket	SITE DESCRIPTION	LCOE (€/MWh)	REDUCTION (€/MWh)	REDUCTION (%)
Technology (All)	Increase turbine size (e.g. to 14MW) and	Irish Sea	65		
Installation (Fixed)	reduce number Installation Methodology and Vessel fleet	Optimised Irish Sea	58	7	-10%
Installation (All)	Optimisation Installation time reduced	Celtic Sea	74		
O&M (Floating)	Improve OM fleet with higher access for e.g. CTVs up to 2m and SOVs up to 4m	Optimised Celtic Sea	70	4	-5%
O&M (Floating)	Offshore maintenance strategy versus tow out for major repairs	Atlantic Ocean	108		
O&M (All)	Improved reliability	Optimised Atlantic Ocean	84	24	-22%

Primarily through EU funded projects (H2020 and Interreg, EPSRC/SFI)

University of Edinburgh Stratclyde University University of Plymouth University of Nottingham University of Exeter Liverpool John Moore's University University of Surrey University of Manchester University of Swansea

Horizon Europe Call - HORIZON-CL5-2021-D3-02-12: Innovation on floating wind energy deployment optimized for deep waters and different sea basins (Mediterranean Sea, Black Sea, Baltic Sea, North-east Atlantic Ocean)

Thank You