

Accounting for Current in Wave Buoy Measurements

Accounting for Current in Wave Buoy Measurements

Obtain Buoy Transfer Functions in Current

Account for modified dispersion relation and mooring dynamics

MANCHESTER

The University of Manchester

E

Supergen

Develop new buoy analysis approach to account for current

Include modified transfer functions & estimate current

$$\begin{split} C_{1,1}(f) &= \int_{0}^{2\pi} T_{1}^{2}(f,\vec{U}(\theta))E(f,\theta)d\theta = S(f) \\ C_{2,2U}(f) &= S(f) \int_{0}^{2\pi} T_{2}^{2}(f,\vec{U}(\theta))D(f,\theta) \frac{\cos^{2}\theta}{\tanh^{2}[k(f,\vec{U}(\theta))d]} d\theta \\ C_{3,3U}(f) &= S(f) \int_{0}^{2\pi} T_{3}^{2}(f,\vec{U}(\theta))D(f,\theta) \frac{\sin^{2}\theta}{\tanh^{2}[k(f,\vec{U}(\theta))d]} d\theta \\ Q_{1,2U}(f) &= S(f) \int_{0}^{2\pi} T_{1}(f,\vec{U}(\theta))T_{2}(f,\vec{U}(\theta))D(f,\theta) \frac{\cos\theta}{\tanh[k(f,\vec{U}(\theta))d]} d\theta \\ Q_{1,3U}(f) &= S(f) \int_{0}^{2\pi} T_{1}(f,\vec{U}(\theta))T_{3}(f,\vec{U}(\theta))D(f,\theta) \frac{\sin\theta}{\tanh[k(f,\vec{U}(\theta))d]} d\theta \\ C_{2,3U}(f) &= S(f) \int_{0}^{2\pi} T_{2}(f,\vec{U}(\theta))T_{3}(f,\vec{U}(\theta))D(f,\theta) \frac{\sin\theta\cos\theta}{\tanh[k(f,\vec{U}(\theta))d]} d\theta \end{split}$$

VERSITY OF

Validate developed method

Experimental tests Full-scale data

